Induction of cytokine (interleukin‐1α and tumor necrosis factor‐α) and chemokine (CCL20, CCL27, and CXCL8) alarm signals after allergen and irritant exposure
- 27 January 2005
- journal article
- Published by Wiley in Experimental Dermatology
- Vol. 14 (2) , 109-116
- https://doi.org/10.1111/j.0906-6705.2005.00226.x
Abstract
The immune system is called into action by alarm signals generate from injured tissues. We examined the nature of these alarm signals after exposure of skin residential cells to contact allergens (nickel sulfate and potassium dichromate) and a contact irritant [sodium dodecyl sulfate (SDS)]. Nickel sulfate, potassium dichromate, and SDS were applied topically to the stratum corneum of human skin equivalents. A similar concentration-dependent increase in chemokine (CCL20, CCL27, and CXCL8) secretion was observed for all three chemicals. Exposure to nickel sulfate and SDS was investigated in more detail: similar to chemokine secretion, no difference was observed in the time- and concentration-dependent increase in pro-inflammatory cytokine [interleukin-1α (IL-1α) and tumor necrosis factor-α (TNF-α)] secretion. Maximal increase in IL-1α secretion occurred within 2 h after exposure to both nickel sulfate and SDS and prior to increased chemokine secretion. TNF-α secretion was detectable 8 h after chemical exposure. After allergen or irritant exposure, increased CCL20 and CXCL8, but not CCL27, secretion was inhibited by neutralizing human antibodies to either IL-1α or TNF-α. Our data show that alarm signals consist of primary and secondary signals. IL-1α and TNF-α are released as primary alarm signals, which trigger the release of secondary chemokine (CCL20 and CXCL8) alarm signals. However, some chemokines, for example, CCL27 can be secreted in an IL-1α and TNF-α independent manner. Our data suggest that skin residential cells respond to both allergen and irritant exposure by releasing mediators that initiate infiltration of immune responsive cells into the skin. © Blackwell Munksgaard, 2005Keywords
This publication has 34 references indexed in Scilit:
- Interleukin-1-stimulated Secretion of Interleukin-8 and Growth-related Oncogene-α Demonstrates Greatly Enhanced Keratinocyte Growth in Human Raft Cultured EpidermisJournal of Investigative Dermatology, 2002
- Inducible expression of a CC chemokine liver- and activation-regulated chemokine (LARC)/macrophage inflammatory protein (MIP)-3α/CCL20 by epidermal keratinocytes and its role in atopic dermatitisInternational Immunology, 2001
- Barrier Disruption Stimulates Interleukin-1α Expression and Release from a Pre-Formed Pool in Murine EpidermisJournal of Investigative Dermatology, 1996
- Surfactant-Induced Stratum Corneum Hydration In Vivo: Prediction of the Irritation Potential of Anionic SurfactantsJournal of Investigative Dermatology, 1993
- Mutual induction of growth factor gene expression by epidermal-dermal cell interactionThe Journal of cell biology, 1993
- Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice.Journal of Clinical Investigation, 1992
- Modulation of leucocyte adhesion molecules, a T-cell chemotaxin (IL-8) and a regulatory cytokine (TNF-α) in allergic contact dermatitis (rhus dermatitis)British Journal of Dermatology, 1991
- Epidermal Damage Induced by Irritants in Man: A Light and Electron Microscopic StudyJournal of Investigative Dermatology, 1989
- Presence of epidermal-derived thymocyte activating factor/interleukin 1 in normal human stratum corneum.Journal of Clinical Investigation, 1985
- Corticoids and Cultured Human Epidermal Keratinocytes: Specific Intracellular Binding and Clinical EfficacyJournal of Investigative Dermatology, 1981