Alzheimer’s Presenilin Mutation Sensitizes Neural Cells to Apoptosis Induced by Trophic Factor Withdrawal and Amyloid β-Peptide: Involvement of Calcium and Oxyradicals
Open Access
- 1 June 1997
- journal article
- Published by Society for Neuroscience in Journal of Neuroscience
- Vol. 17 (11) , 4212-4222
- https://doi.org/10.1523/jneurosci.17-11-04212.1997
Abstract
Most autosomal dominant inherited forms of early onset Alzheimer’s disease (AD) are caused by mutations in the presenilin-1 (PS-1) gene on chromosome 14. PS-1 is an integral membrane protein with six to nine membrane-spanning domains and is expressed in neurons throughout the brain wherein it is localized mainly in endoplasmic reticulum (ER). The mechanism or mechanisms whereby PS-1 mutations promote neuron degeneration in AD are unknown. Recent findings suggest links among deposition of amyloid β-peptide (Aβ), oxidative stress, disruption of ion homeostasis, and an apoptotic form of neuron death in AD. We now report that expression of the human PS-1 L286V mutation in PC12 cells increases their susceptibility to apoptosis induced by trophic factor withdrawal and Aβ. Increases in oxidative stress and intracellular calcium levels induced by the apoptotic stimuli were exacerbated greatly in cells expressing the PS-1 mutation, as compared with control cell lines and lines overexpressing wild-type PS-1. The antiapoptotic gene product Bcl-2 prevented apoptosis after NGF withdrawal from differentiated PC12 cells expressing mutant PS-1. Elevations of [Ca2+]iin response to thapsigargin, an inhibitor of the ER Ca2+-ATPase, were increased in cells expressing mutant PS-1, and this adverse effect was abolished in cells expressing Bcl-2. Antioxidants and blockers of calcium influx and release from ER protected cells against the adverse consequences of the PS-1 mutation. By perturbing cellular calcium regulation and promoting oxidative stress, PS-1 mutations may sensitize neurons to apoptotic death in AD.Keywords
This publication has 65 references indexed in Scilit:
- Increased Activity‐Regulating and Neuroprotective Efficacy of α‐Secretase‐Derived Secreted Amyloid Precursor Protein Conferred by a C‐Terminal Heparin‐Binding DomainJournal of Neurochemistry, 1996
- Alzheimer‐associated presenilin‐2 confers increased sensitivity to poptosis in PC12 cellsFEBS Letters, 1996
- Familial Alzheimer's Disease–Linked Presenilin 1 Variants Elevate Aβ1–42/1–40 Ratio In Vitro and In VivoNeuron, 1996
- Evidence for calcium regulation of spinal cord motoneuron death in the chick embryo in vivoDevelopmental Brain Research, 1995
- Apoptosis in the Pathogenesis and Treatment of DiseaseScience, 1995
- Calcium Ionophore Increases Amyloid .beta. Peptide Production by Cultured CellsBiochemistry, 1994
- Genetics and molecular advances in Alzheimer's diseaseTrends in Neurosciences, 1993
- Calcium-destabilizing and neurodegenerative effects of aggregated β-amyloid peptide are attenuated by basic FGFBrain Research, 1993
- Aurintricarboxylic acid rescues PC12 cells and sympathetic neurons from cell death caused by nerve growth factor deprivation: correlation with suppression of endonuclease activity.The Journal of cell biology, 1991
- Changes in the colchicine susceptibility of microtubules associated with neurite outgrowth: studies with nerve growth factor-responsive PC12 pheochromocytoma cells.The Journal of cell biology, 1982