Shuttle Mechanism for Charge Transfer in Coulomb Blockade Nanostructures
Preprint
- 4 March 1998
Abstract
Room-temperature Coulomb blockade of charge transport through composite nanostructures containing organic inter-links has recently been observed. A pronounced charging effect in combination with the softness of the molecular links implies that charge transfer gives rise to a significant deformation of these structures. For a simple model system containing one nanoscale metallic cluster connected by molecular links to two bulk metallic electrodes we show that self-excitation of periodic cluster oscillations in conjunction with sequential processes of cluster charging and decharging appears for a sufficiently large bias voltage. This new `electron shuttle' mechanism of discrete charge transfer gives rise to a current through the nanostructure, which is proportional to the cluster vibration frequency.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: