Abstract
Measurements of the Cd113 nuclear-spin-lattice relaxation time T1 and Hall effect in crystalline CdO, a degenerate semiconductor, have yielded the contact hyperfine strength of the conduction electrons at the nuclei. The product T1T=168 sec °K, independent of temperature T and frequency ν for T=1.4,4.2, and 77350 °K, and for ν=210 MHz. Taking the carrier concentration N=2.6×1019 cm3 independent of temperature to within 3% at 4.2, 77, and 300°K, and using an effective electron mass me*=0.2me, we calculate an averaged electron probability density at the nucleus, |φF(0)|2=7×1025 cm3, normalized to unity in an atomic volume. A comparison with |φA(0)|2 in an isolated atom is interpreted to show that the Fermi level of the impurity band lies in the host-lattice conduction band. The Hall-effect data support this. The resonance frequency shift predicted from the Korringa relationship, -0.017%, is smaller than the observed shift, -0.031%. This is thought to be due to covalency contributions rather than to electron-electron interactions.