Abstract
This study is a continuation of the results published previously (Sevag & Ishii 1958). It surveys quantitatively the extracellular and intracellular accumulation of p-aminobenzoic acid (PAB), pteridine, folic acid (FA) and citrovorum factor (CF) of the various sulphathiazole (ST)-sensitive and ST-resistant strains of Escherichia coli grown with and without ST. The altered enzymic activities of the resistant strain with respect to growth factor requirement is also determined. The following observations are made. The utilization of the exogenous PAB by the PAB-dependent strain is followed by the multiplication of cells. These events are followed by the extracellular accumulation of FA first and then CF. This pattern applies to other strains of E. coli and is in accordance with the well-known sequence of steps involved in the synthesis of PAB, pteridine, FA, CF and growth. It is shown that PAB accumulates principally extracellularly, and pteridine principally intracellularly. The synthesis of FA by the resistant strain is at least tenfold more resistant to ST than in the sensitive strain. In the resistant strain there is a greater intracellular than extracellular accumulation of FA and CF. In the sensitive strain this relationship is reversed. The resistant strains are inheritably capable of synthesizing greater amounts of pteridine, FA and CF. The PAB-dependent ST-sensitive strain can utilize a combination of 1-methionine and any of the purines, of 1-methionine alone, or vitamin B12 alone in place of PAB for a partial or full growth. The related resistant strain, on the other hand, is unable to multiply in the salts-glucose medium with and without PAB. It requires a combination of 1-methionine and glycine for growth which cannot be replaced by any of the factors mentioned above. This requirement of the resistant strain for growth is analyzed as a deficiency of the enzymic transmethylations and transhydroxymethylation involving the function of CF in the resistant strain.