Characterization of type II protein secretion (xcp) genes in the plant growth-stimulatingPseudomonas putida, strain WCS358

Abstract
InPseudomonas aeruginosa, the products of thexcp genes are required for the secretion of exoproteins across the outer membrane. Despite structural conservation of the Xcp components, secretion of exoproteins via the Xcp pathway is generally not found in heterologous organisms. To study the specificity of this protein secretion pathway, thexcp genes of another fluorescent pseudomonad, the plant growth-promotingPseudomonas putida strain WCS358, were cloned and characterized. Nucleotide sequence analysis revealed the presence of at least five genes, i.e.,xcpP, Q, R, S, andT, with homology toxcp genes ofP. aeruginosa. Unlike the genetic organization inP. aeruginosa, where thexcp cluster consists of two divergently transcribed operons, thexcp genes inP. putida are all oriented in the same direction, and probably comprise a single operon. Upstream ofxcpP inP. putida, an additional open reading frame, with no homolog inP. aeruginosa, was identified, which possibly encodes a lipoprotein. Mutational inactivation ofxcp genes inP. putida did not affect secretion, indicating that no proteins are secreted via the Xcp system under the growth conditions tested, and that an alternative secretion system is operative. To obtain some insight into the secretory pathway involved, the amino acid sequence of the N-terminus of the major extracellular protein was determined. The protein could be identified as flagellin. Mutations in thexcpQ andR genes ofP. aeruginosa could not be complemented by introduction of the correspondingxcp genes ofP. putida. However, expression of a hybrid XcpR protein, composed of the N-terminal one-third ofP. aeruginosa XcpR and the C-terminal two-thirds ofP. putida XcpR, did restore protein secretion in aP. aeruginosa xcpR mutant.

This publication has 52 references indexed in Scilit: