Statistical Aspects of a Three-Mode Factor Analysis Model

Abstract
A special case of Bloxom's version of Tucker's three-mode model is developed statistically. A distinction is made between modes in terms of whether they are fixed or random. Parameter matrices are associated with the fixed modes, while no parameters are associated with the mode representing random observation vectors. The identification problem is discussed, and unknown parameters of the model are estimated by a weighted least squares method based upon a Gauss-Newton algorithm. A goodness-of-fit statistic is presented. An example based upon self-report and peer-report measures of personality shows that the model is applicable to real data. The model represents a generalization of Thurstonian factor analysis; weighted least squares estimators and maximum likelihood estimators of the factor model can be obtained using the proposed theory.