The rat retina is a useful in vivo model to study membrane lipid synthesis: Rates of biosynthesis of neutral glycerides and phospholipids

Abstract
The phospholipid composition was studied in the whole rat retina, as well as in its subcellular fractions. A relative enrichment of phosphatidic acid, phosphatidylethanolamine, and phosphatidylserine was observed in rod outer segments (ROS) in comparison with entire retina: nuclear-photoreceptor inner segmentssynaptic bodies (P1) and synaptosomal-mitochondrial (P2) fractions. Phosphatidylcholine was the predominant phospholipid class found in all subcellular fractions analyzed. The microsomal fraction was relatively enriched in phosphatidic acid and in phosphatidylinositol. In addition, the rat eye has been used as an in vivo system to study membrane lipid synthesis. After intravitreal injections of [2-3H]glycerol a rapid labeling of retinal glycerolipids took place. Up to 120 min after injection only the glycerol backbone of lipids was labeled. Phosphatidic acid and diacylglycerol displayed rapid rates of synthesis and breakdown. Fastest rates of labeling were attained by phosphatidylcholine followed by phosphatidylinositol. Differences were found when in vitro labeling by [2-3H]glycerol was compared with intravitreal injections. Labeling of phospholipids of subcellular fractions by intravitreally injected [2-3H]glycerol showed that most of the label accumulated in microsomal phosphatidylcholine and phosphatidylinositol. Diacylglycerols and phosphatidylethanolamine also took up 10 and 20% respectively of the precursor. It is concluded that the rat eye is a useful experimental model to study synthesis and metabolism of membrane lipids in the retina.