Abstract
In two papers, (5) and (6), D. G. Northcott and the author considered the notion of the reductions of an ideal a of a Noether ring A. A reduction of a is an ideal b contained in a which satisfies ar+1 = arb for all sufficiently large r. This notion was inspired by the following elementary property of a reduction. Suppose that A is a local ring with maximal ideal m, and that a is m-primary. It is well known (Samuel (10)) that the length of the ideal an is, for large values of n equal to Pa(n) where Pa(n) is a polynomial in n whose degree d is equal to the dimension of A. If we write the coefficient of nd in Pa(n) in the form e(a)/d!, e(a) is a positive integer termed the multiplicity of a. If now b is a reduction of a, then b is also m-primary, and e(b) = e(a).

This publication has 9 references indexed in Scilit: