Abstract
Error and uncertainty in spatial databases have gained considerable attention in recent years. The concern is that, as in other computer applications and, indeed, all analyses, poor quality input data will yield even worse output. Various methods for analysis of uncertainty have been developed, but none has been shown to be directly applicable to an actual geographical information system application in the area of natural resources. In spatial data on natural resources in general, and in soils data in particular, a major cause of error is the inclusion of unmapped units within areas delineated on the map as uniform. In this paper, two alternative algorithms for simulating inclusions in categorical natural resource maps are detailed. Their usefulness is shown by a simplified Monte Carlo testing to evaluate the accuracy of agricultural land valuation using land use and the soil information. Using two test areas it is possible to show that errors of as much as 6 per cent may result in the process of land valuation, with simulated valuations both above and below the actual values. Thus, although an actual monetary cost of the error term is estimated here, it is not found to be large.

This publication has 8 references indexed in Scilit: