Modulus–density scaling behaviour and framework architecture of nanoporous self-assembled silicas

Abstract
Natural porous materials such as bone, wood and pith evolved to maximize modulus for a given density1. For these three-dimensional cellular solids, modulus scales quadratically with relative density2,3. But can nanostructuring improve on Nature’s designs? Here, we report modulus–density scaling relationships for cubic (C), hexagonal (H) and worm-like disordered (D) nanoporous silicas prepared by surfactant-directed self-assembly. Over the relative density range, 0.5 to 0.65, Young’s modulus scales as (density)n where n(C)<n(H)<n(D)4. Using molecular modelling and Raman and NMR spectroscopy, we show that uniform nanoscale confinement causes the silica framework of self-assembled silica to contain a higher portion of small, stiff rings than found in other forms of amorphous silica. The nanostructure-specific hierarchy and systematic increase in framework modulus we observe, when decreasing the silica framework thickness below 2 nm, provides a new ability to maximize mechanical properties at a given density needed for nanoporous materials integration5.