SCIAMACHY: Mission Objectives and Measurement Modes

Abstract
SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) is a spectrometer designed to measure sunlight transmitted, reflected, and scattered by the earth’s atmosphere or surface in the ultraviolet, visible, and near-infrared wavelength region (240–2380 nm) at moderate spectral resolution (0.2–1.5 nm, λ/Δλ ≈ 1000–10 000). SCIAMACHY will measure the earthshine radiance in limb and nadir viewing geometries and solar or lunar light transmitted through the atmosphere observed in occultation. The extraterrestrial solar irradiance and lunar radiance will be determined from observations of the sun and the moon above the atmosphere. The absorption, reflection, and scattering behavior of the atmosphere and the earth’s surface is determined from comparison of earthshine radiance and solar irradiance. Inversion of the ratio of earthshine radiance and solar irradiance yields information about the amounts and distribution of important atmospheric constituents and the spectral reflecta... Abstract SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) is a spectrometer designed to measure sunlight transmitted, reflected, and scattered by the earth’s atmosphere or surface in the ultraviolet, visible, and near-infrared wavelength region (240–2380 nm) at moderate spectral resolution (0.2–1.5 nm, λ/Δλ ≈ 1000–10 000). SCIAMACHY will measure the earthshine radiance in limb and nadir viewing geometries and solar or lunar light transmitted through the atmosphere observed in occultation. The extraterrestrial solar irradiance and lunar radiance will be determined from observations of the sun and the moon above the atmosphere. The absorption, reflection, and scattering behavior of the atmosphere and the earth’s surface is determined from comparison of earthshine radiance and solar irradiance. Inversion of the ratio of earthshine radiance and solar irradiance yields information about the amounts and distribution of important atmospheric constituents and the spectral reflecta...