Parrondo's paradox

Abstract
We introduce Parrondo's paradox that involves games of chance. We consider two fair gambling games, A and B, both of which can be made to have a losing expectation by changing a biasing parameter $\epsilon$. When the two games are played in any alternating order, a winning expectation is produced, even though A and B are now losing games when played individually. This strikingly counter­intuitive result is a consequence of discrete­time Markov chains and we develop a heuristic explanation of the phenomenon in terms of a Brownian ratchet model. As well as having possible applications in electronic signal processing, we suggest important applications in a wide range of physical processes, biological models, genetic models and sociological models. Its impact on stock market models is also an interesting open question.

This publication has 14 references indexed in Scilit: