Iterative identification and restoration of images

Abstract
The blur identification problem is formulated as a constrained maximum-likelihood problem. The constraints directly incorporate a priori known relations between the blur (and image model) coefficients, such as symmetry properties, into the identification procedure. The resulting nonlinear minimization problem is solved iteratively, yielding a very general identification algorithm. An example of blur identification using synthetic data is given.

This publication has 4 references indexed in Scilit: