Electrospray Ionization with a Pointed Carbon Fiber Emitter

Abstract
A new type of electrospray ionization emitter employing a pointed carbon fiber has been developed for interfacing nanoliquid sampling techniques to mass spectrometry. The pointed carbon fiber protruding from an orifice with a surrounding hydrophobic surface confines a small Taylor cone at the tip, which generates a stable electrospray at the tip point. The small Taylor cone improves the electrospray efficiency thereby enhancing the detection limit. This emitter is rugged and able to generate stable electrospray over a wide range of flow rate, ESI voltage, and surface tension variation. Using a solution of angiotensin I, the carbon fiber emitter in 75-μm-i.d. fused-silica tubing was shown to give ion current comparable to that from a commercial 8 μm orifice nanospray emitter. Use of the emitter for ESI-MS/MS analysis of peptides was examined by infusing a mixture of cytochrome c and myoglobin tryptic digest peptides. Protein identification was demonstrated at the level of less than 1 fmol of the peptide consumed. The use of the carbon fiber emitter for interfacing monolithic capillary HPLC to MS was also demonstrated.

This publication has 14 references indexed in Scilit: