Endoplasmic Reticulum Stress Markers Are Associated with Obesity in Nondiabetic Subjects
Open Access
- 1 November 2008
- journal article
- research article
- Published by The Endocrine Society in Journal of Clinical Endocrinology & Metabolism
- Vol. 93  (11) , 4532-4541
- https://doi.org/10.1210/jc.2008-1001
Abstract
Objective: Adipocyte and hepatocyte endoplasmic reticulum (ER) stress response is activated in dietary and genetic models of obesity in mice. We hypothesized that ER stress was also activated and associated with reduced insulin sensitivity (SI) in human obesity. Research Design and Methods: We recruited 78 healthy, nondiabetic individuals over a spectrum of body mass index (BMI) who underwent oral and iv glucose tolerance tests, and fasting sc adipose and muscle biopsies. We tested expression of 18 genes and levels of total and phosphorylated eukaryotic initiation factor 2α, c-jun, and c-Jun N-terminal kinase 1 in adipose tissue. We compared gene expression in stromal vascular and adipocyte fractions in paired samples from 22 individuals, and tested clustering on gene and protein markers. Results: Adipocyte expression of most markers of ER stress, including chaperones downstream of activating transcription factor 6, were significantly correlated with BMI and percent fat (r > 0.5; P < 0.00001). Phosphorylation of eukaryotic initiation factor 2α but not of c-Jun N-terminal kinase 1 or c-jun was increased with obesity. ER stress response (as elsewhere) was also increased with obesity in a second set of 86 individuals, and in the combined sample (n = 161). The increase was only partially attributable to the stromal vascular fraction and macrophage infiltration. ER stress markers were only modestly correlated with SI. Clustering algorithms supported ER stress activation with high BMI but not low SI. Conclusions: Multiple markers of ER stress are activated in human adipose with obesity, particularly for protective chaperones downstream of activating transcription factor 6α.Keywords
This publication has 34 references indexed in Scilit:
- Transcriptional Induction of Mammalian ER Quality Control Proteins Is Mediated by Single or Combined Action of ATF6α and XBP1Developmental Cell, 2007
- The Endoplasmic Reticulum Chaperone Improves Insulin Resistance in Type 2 DiabetesDiabetes, 2005
- The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stressMethods, 2005
- Involvement of Endoplasmic Reticulum Stress in Insulin Resistance and DiabetesJournal of Biological Chemistry, 2005
- PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear orderBioinformatics, 2004
- Endoplasmic Reticulum Stress Links Obesity, Insulin Action, and Type 2 DiabetesScience, 2004
- MINMOD Millennium: A Computer Program to Calculate Glucose Effectiveness and Insulin Sensitivity from the Frequently Sampled Intravenous Glucose Tolerance TestDiabetes Technology & Therapeutics, 2003
- Homeostasis model assessment: insulin resistance and ?-cell function from fasting plasma glucose and insulin concentrations in manDiabetologia, 1985
- A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye BindingAnalytical Biochemistry, 1976
- METABOLISM OF ISOLATED FAT CELLS .I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM + LIPOLYSIS1964