Linear stability analysis of an insoluble surfactant monolayer spreading on a thin liquid film

Abstract
Recent experiments by several groups have uncovered a novel fingering instability in the spreading of surface active material on a thin liquid film. The mechanism responsible for this instability is yet to be determined. In an effort to understand this phenomenon and isolate a possible mechanism, we have investigated the linear stability of a coupled set of equations describing the Marangoni spreading of a surfactant monolayer on a thin liquid support. The unperturbed flows, which exhibit simple linear behavior in the film thickness and surfactant concentration, are self-similar solutions of the first kind for spreading in a rectilinear geometry. The solution of the disturbance equations determines that the rectilinear base flows are linearly stable. An energy analysis reveals why these base flows can successfully heal perturbations of all wavenumbers. The details of this analysis suggest, however, a mechanism by which the spreading can be destabilized. We propose how the inclusion of additional forces acting on the surfactant coated spreading film might give rise to regions of adverse mobility gradients known to produce fingering instabilities in other fluid flows.

This publication has 15 references indexed in Scilit: