Learning the Initial State of a Second-Order Recurrent Neural Network during Regular-Language Inference

Abstract
Recent work has shown that second-order recurrent neural networks (2ORNNs) may be used to infer regular languages. This paper presents a modified version of the real-time recurrent learning (RTRL) algorithm used to train 2ORNNs, that learns the initial state in addition to the weights. The results of this modification, which adds extra flexibility at a negligible cost in time complexity, suggest that it may be used to improve the learning of regular languages when the size of the network is small.

This publication has 1 reference indexed in Scilit: