Abstract
The mouse mammary tumor virus enters mammary epithelial cells via a plasma membrane protein that binds to a viral envelope glycoprotein, gp52. In intact cells, this gp52 receptor can be phosphorylated by activators of protein kinase A and protein kinase C (PKC), but this modification does not occur in response to epidermal growth factor, whose receptor is a tyrosine kinase, or to gp52. Phosphorylation of the gp52 receptor rapidly leads to internalization and gradual loss of binding activity. Both the phosphorylation and the intrnalization induced by PKC are abolished by prior downregulation of this kinase. Although the physiological function of the gp52 receptor is unknown, its binding to gp52 can stimulate several biological activities, including amino acid accumulation. Receptor processingimpairs this gp52-induced amino acid uptake, as well as viral infection, by depleting the binding protein at the cell surface. In contrast, PKC augments insulin-induced amino acid transport, and PKC downregulation abolishes the action of insulin, suggesting that insulin and gp52 utlize partially separate pathways leading to amino acid transport. These data further suggest that PKC may be involved in this insulin-stimulated activity.