Persistent Defect in Transmitter Release and Synapsin Phosphorylation in Cerebral Cortex After Transient Moderate Ischemic Injury
- 1 May 2002
- journal article
- research article
- Published by Wolters Kluwer Health in Stroke
- Vol. 33 (5) , 1369-1375
- https://doi.org/10.1161/01.str.0000013708.54623.de
Abstract
Background and Purpose— Synaptic transmission is highly vulnerable to metabolic perturbations. However, the long-term consequences of transient metabolic perturbations on synapses are not clear. We studied the long-lasting changes in synaptic transmission and phosphorylation of presynaptic proteins in penumbral cortical neurons after transient moderate ischemia. Methods— Rats were subjected to 1 hour of middle cerebral artery occlusion. After reperfusion, electric activity of neurons in the peri-infarct region was recorded intracellularly and extracellularly in situ. Phosphorylation of synapsin-I and tyrosine residues was studied by immunohistochemistry. Results— Neurons in the penumbra displayed no postsynaptic potentials 1 to 3 hours after recirculation. However, these cells were able to generate action potentials and were responsive to glutamate, suggesting that postsynaptic excitability was preserved but the synaptic transmission was blocked because of a presynaptic defect. The synaptic transmission was still depressed 24 hours after recirculation in neurons in the peri-infarct area that survived ischemia. The amount of immunoreactive synapsin-I, synaptophysin, and synaptotagmin was not appreciably changed for 72 hours after reperfusion. However, phosphorylation of synapsin-l was significantly decreased, whereas phosphotyrosine immunoreactivity was increased, suggesting a selective defect in synapsin-I phosphorylation. Conclusions— These data demonstrate that synaptic transmission may be permanently impaired after transient moderate brain injury. Since postsynaptic excitability is preserved, the transmission failure is likely to be caused by presynaptic mechanisms, one of which may be impaired phosphorylation of presynaptic proteins.Keywords
This publication has 33 references indexed in Scilit:
- Synapse Loss and Regeneration: A Mechanism for Functional Decline and Recovery after Cerebral Ischemia?The Neuroscientist, 2000
- Periinfarct and Remote Excitability Changes after Transient Middle Cerebral Artery OcclusionJournal of Cerebral Blood Flow & Metabolism, 2000
- Neuroprotective effects of gelsolin during murine strokeJournal of Clinical Investigation, 1999
- Energy Thresholds in Brain MitochondriaJournal of Biological Chemistry, 1998
- Delayed Treatment with α-Phenyl-N-tert-butyl Nitrone (PBN) Attenuates Secondary Mitochondrial Dysfunction after Transient Focal Cerebral Ischemia in the RatNeurobiology of Disease, 1996
- Synaptic Vesicle Phosphoproteins and Regulation of Synaptic FunctionScience, 1993
- Inhibition of sodium-potassium-ATPase: a potentially ubiquitous mechanism contributing to central nervous system neuropathologyBrain Research Reviews, 1991
- NADH Fluorescence and Regional Energy Metabolites during Focal Ischemia and Reperfusion of Rat BrainJournal of Cerebral Blood Flow & Metabolism, 1991
- Afferent connections of the lateral agranular field of the rat motor cortexJournal of Comparative Neurology, 1983
- Delayed neuronal death in the gerbil hippocampus following ischemiaBrain Research, 1982