Sensory and Memory Properties of Hippocampal Place Cells

Abstract
The rat hippocampus contains place cells whose firing is location-specific. These cells fire only when the rat enters a restricted region of the environment called the firing field. In this review, we examine the sensory information that is fundamental to the place cell system for producing spatial firing. While visual information takes precedence in the control of firing fields when it is available, local (olfactory and/or tactile) cues combined with motion-related cues can permit stable spatial firing. Motion-related cues are integrated by hippocampal place cells, but in the absence of external cues do not support stable firing over long periods. While firing fields are based on a variety of sensory cues, they do not strictly depend on such cues. Rather, sensory information is important for activating the representation appropriate to the current environment as reflected by the firing properties of place cell ensembles. Specific sensory channels as well as the memory properties of place cells can support ongoing firing under manipulations of the environment. These memory features raise the question of the role of the place cell system in the acquisition, storage and retrieval of spatial information. Based on the existing literature about the effects of hippocampal lesions and about the metabolic activations in spatial memory tasks, we suggest that a function of the place cell system is to automatically provide the organism with information about its current location so as to allow for the rapid acquisition of novel information.