The relationship between viral RNA, myelin-specific mRNAs, and demyelination in central nervous system disease during Theiler's virus infection.

  • 1 December 1990
    • journal article
    • Vol. 137  (6) , 1467-79
Abstract
The DA strain of Theiler's murine encephalomyelitis virus (DAV) causes a chronic demyelinating disease in susceptible mouse strains. To elucidate the pathogenesis of DAV-induced demyelination, the authors investigated the spatial and chronologic relationship between virus (antigen and RNA), myelin-specific mRNAs, and demyelination in DAV-infected mice using immunohistochemistry, in situ hybridization, and slot blot hybridization analyses. In spinal cord white matter, viral RNA was detected easily in ventral root entry zones 1 to 2 weeks after infection. Viral RNA increased to maximum levels by 4 weeks after infection, which was associated with inflammation and mild demyelination. At 8 to 12 weeks after infection, when demyelination became most extensive, viral RNA was significantly decreased. Demyelination did not chronologically or spatially parallel the presence of viral RNA within the spinal cord. Decrease of myelin-specific mRNAs, including myelin-basic protein and proteolipid protein mRNAs, was observed within the demyelinating lesions with or without detectable viral RNA. These results indicate that a viral infection of white matter in the early phase of the infection initiates spinal cord disease leading to demyelination, but later an ongoing immunopathologic process contributes to the presence of extensive demyelination.