Almost Special Holonomy in Type IIA&M Theory

Abstract
We consider spaces M_7 and M_8 of G_2 holonomy and Spin(7) holonomy in seven and eight dimensions, with a U(1) isometry. For metrics where the length of the associated circle is everywhere finite and non-zero, one can perform a Kaluza-Klein reduction of supersymmetric M-theory solutions (Minkowksi)_4\times M_7 or (Minkowksi)_3\times M_8, to give supersymmetric solutions (Minkowksi)_4\times Y_6 or (Minkowksi)_3\times Y_7 in type IIA string theory with a non-singular dilaton. We study the associated six-dimensional and seven-dimensional spaces Y_6 and Y_7 perturbatively in the regime where the string coupling is weak but still non-zero, for which the metrics remain Ricci-flat but that they no longer have special holonomy, at the linearised level. In fact they have ``almost special holonomy,'' which for the case of Y_6 means almost Kahler, together with a further condition. For Y_7 we are led to introduce the notion of an ``almost G_2 manifold,'' for which the associative 3-form is closed but not co-closed. We obtain explicit classes of non-singular metrics of almost special holonomy, associated with the near Gromov-Hausdorff limits of families of complete non-singular G_2 and Spin(7) metrics.

This publication has 0 references indexed in Scilit: