Abstract
For a certain collection of transformations T we define a Perron-Frobenius operator and prove a convergence theorem for the powers of the operator along the lines of the theorem D. Ruelle proved in his investigation of the equilibrium states of one-dimensional lattice systems. We use the convergence theorem to study the existence and ergodic properties of equilibrium states for T and also to study the problem of invariant measures for T. Examples of the transformations T considered are expanding maps, transformations arising from f-expansions and shift systems.

This publication has 11 references indexed in Scilit: