Asymmetry and Structural Changes in ECF Examined by Cryoelectronmicroscopy

Abstract
The Escherichia coli ATPase (ECF1) has been studied by cryoelectronmicroscopy and an intrinsic asymmetry of the molecule in the hexagonal projection identified. The three beta subunits could be distinguished. One, which we have called beta 1, has a greater density in projection than the other two; the second, beta 2, is of intermediate density in projection, while the third, beta 3, is smeared out in density. These different features of the beta subunits were used to orient images, and the positions of the gamma and epsilon subunits then established. The location of the gamma subunit, as monitored by the central mass, was not fixed. This subunit could be found in positions that followed an arc from close to beta 2 to close to beta 3, a shift of around 10A, with respect to the center of the mass. The location of the epsilon subunit was monitored after reconstituting a complex of epsilon subunit-depleted ECF1 with a mutant epsilon subunit in which His at residue 38 had been replaced by Cys, and this Cys labeled with an approximately 14A gold particle. The epsilon subunit was found in positions described by an arc between an alpha subunit (alpha 1) and the neighboring beta subunit (beta 1), a shift of around 20A, with respect to the center of the gold particle. A nucleotide dependence of the position of the gamma subunit has been established by Gogol, E.P., Johnston, E., Aggeler, R. and Capaldi, R.A. (1990) Proc. Natl. Acad. Sci. USA 87, 9585-9589. A nucleotide dependence of the position of the epsilon subunit is shown here.(ABSTRACT TRUNCATED AT 250 WORDS)