Characterization and identification of steroid sulfate transporters of human placenta

Abstract
Human trophoblasts depend on the supply of external precursors, such as dehydroepiandrosterone-3-sulfate (DHEA-S) and 16α-OH-DHEA-S, for synthesis of estrogens. The aim of the present study was to characterize the uptake of DHEA-S by isolated mononucleated trophoblasts (MT) and to identify the involved transporter polypeptides. The kinetic analysis of DHEA-35S uptake by MT revealed a saturable uptake mechanism ( Km= 26 μM, Vmax= 428 pmol · mg protein−1· min−1), which was superimposed by a nonsaturable uptake mechanism (diffusion constant = 1.2 μl · mg protein−1· min−1). Uptake of [3H]DHEA-S by MT was Na+dependent and inhibited by sulfobromophthalein (BSP), steroid sulfates, and probenecid, but not by steroid glucuronides, unconjugated steroids, conjugated bile acids, ouabain, p-aminohippurate (PAH), and bumetanide. MT took up [35S]BSP, [3H]estrone-sulfate, but not3H-labeled ouabain, estradiol-17β-glucuronide, taurocholate, and PAH. RT-PCR revealed that the organic anion-transporting polypeptides OATP-B, -D, -E, and the organic anion transporter OAT-4 are highly expressed, and that OATP-A, -C, -8, OAT-3, and Na+-taurocholate cotransporting polypeptide (NTCP) are not or are only lowly expressed in term placental tissue and freshly isolated and cultured trophoblasts. Immunohistochemistry of first- and third-trimester placenta detected OAT-4 on cytotrophoblast membranes and at the basal surface of the syncytiotrophoblast. Our results indicate that uptake of steroid sulfates by isolated MT is mediated by OATP-B and OAT-4 and suggest a physiological role of both carrier proteins in placental uptake of fetal-derived steroid sulfates.