High-Field Studies of Band Ferromagnetism in Fe and Ni by Mössbauer and Magnetic Moment Measurements
- 10 May 1969
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 181 (2) , 863-882
- https://doi.org/10.1103/physrev.181.863
Abstract
High-field susceptibility in Fe and Ni (at 4.2, 77, and 300°K) and high-field Mössbauer studies in Fe at 4.2°K are reported and related to the band structure of Fe and Ni and to band models of ferromagnetism. The Mössbauer effect was employed to measure the change in the hyperfine field at the nucleus with application of an external field. Assuming to be proportional to the bulk magnetization, a microscopic equivalent to is obtained. We also show how the high-field data may be used alternatively to determine the nuclear factor. The macroscopic differential magnetic moment measurements are presented along with an extensive discussion of the experiments to 150 kG. We find emu/cc for Fe and 1.7× emu/cc for Ni at 4.2°K, where is averaged from 50-150 kG. The interpretation of these low-temperature data (when reasonable estimates of Van Vleck susceptibility are made) indicates holes in both spin bands of Fe and a full band of one spin in N, in agreement with the accepted band theory picture for these metals and with recent spin-polarized and pseudopotential band calculations for magnetic Fe and Ni. The differential magnetic moment measurements at higher temperatures are in reasonable agreement with predictions of spin-wave theory. In the Appendices we include: (a) a tabulation of the fielddependent terms which enter into the spin-wave description of the magnetization and their derivatives with respect to field and temperature, (b) a discussion of depolarization effects and their influence on the approach to saturation, and (c) a discussion of the dependence of the magnetic moment measurements on sample positioning errors.
Keywords
This publication has 40 references indexed in Scilit:
- Anisotropy of the Magnetic Form Factor in 3d Ferromagnetic MetalsJournal of Applied Physics, 1968
- Energy Bands in Ferromagnetic NickelPhysical Review B, 1967
- Interpolation Scheme for Band Structure of Noble and Transition Metals: Ferromagnetism and Neutron Diffraction in NiPhysical Review B, 1966
- Band Structure of Ferromagnetic Iron Self-Consistent ProcedureJournal of the Physics Society Japan, 1966
- High-Field Susceptibilities of Iron and NickelJournal of Applied Physics, 1966
- Ferromagnetic Metals in High Magnetic FieldsJournal of Applied Physics, 1966
- Field dependence of the magnetization in high fields for b.c.c. Fe-Co and Fe-Ni alloysPhysics Letters, 1966
- Deviations fromLaw for Magnetization of Ferrometals: Ni, Fe, and Fe+3% SiPhysical Review B, 1963
- High magnetic field effects in ferromagnetic metalsPhysics Letters, 1962
- On the Theory of Spin Waves in Ferromagnetic MediaPhysical Review B, 1951