Interaction of Oxidative Stress and Inflammatory Response in Coronary Plaque Instability

Abstract
Objective— C-reactive protein (CRP), a predictor of cardiovascular events, localizes in atherosclerotic arteries and exerts proinflammatory effects on vascular cells. Reactive oxygen species (ROS) have been implicated in atherogenesis and plaque instability. Methods and Results— Expressional pattern of CRP in directional coronary atherectomy specimens from 39 patients was examined. Characteristics of histological plaque instability and higher levels of serum CRP and fibrinogen were associated with the CRP immunoreactivity. In situ hybridization revealed the presence of CRP mRNA in coronary vasculature. Furthermore, the expression of CRP mRNA and protein was detected in cultured human coronary artery smooth muscle cells (CASMCs) by reverse transcriptase–polymerase chain reaction and Western blotting. In addition, CRP was frequently colocalized with p22phox, an essential component of NADH/NADPH oxidase, which is an important source of ROS in vasculature. Moreover, the incubation of cultured CASMCs with CRP ...

This publication has 27 references indexed in Scilit: