Cluster analysis (CA) has been applied to geophysical research for over two decades although its popularity has increased dramatically over the past few years. To date, systematic methodological reviews have not appeared in geophysical literature. In this paper, after a review of a large number of applications on cluster analysis, an intercomparison of various cluster techniques was carried out on a well-studied dataset (7-day precipitation data from 1949 to 1987 in central and eastern North America). The cluster methods tested were single linkage, complete linkage, average linkage between groups, average linkage within a new group, Ward's method, k means, the nucleated agglomerative method, and the rotated principal component analysis. Three different dissimilarity measures (Euclidean distance, inverse correlation, and theta angle) and three initial partition methods were also tested on the hierarchical and nonhierarchical methods, respectively. Twenty-two of the 23 cluster algorithms yielded na... Abstract Cluster analysis (CA) has been applied to geophysical research for over two decades although its popularity has increased dramatically over the past few years. To date, systematic methodological reviews have not appeared in geophysical literature. In this paper, after a review of a large number of applications on cluster analysis, an intercomparison of various cluster techniques was carried out on a well-studied dataset (7-day precipitation data from 1949 to 1987 in central and eastern North America). The cluster methods tested were single linkage, complete linkage, average linkage between groups, average linkage within a new group, Ward's method, k means, the nucleated agglomerative method, and the rotated principal component analysis. Three different dissimilarity measures (Euclidean distance, inverse correlation, and theta angle) and three initial partition methods were also tested on the hierarchical and nonhierarchical methods, respectively. Twenty-two of the 23 cluster algorithms yielded na...