Iontophoresis Enhances the Transport of Acyclovir Through Nude Mouse Skin by Electrorepulsion and Electroosmosis
- 1 January 1995
- journal article
- Published by Springer Nature in Pharmaceutical Research
- Vol. 12 (11) , 1623-1627
- https://doi.org/10.1023/a:1016284815501
Abstract
Purpose. Iontophoresis was employed for enhancing the transdermal delivery of acyclovir through nude mouse skin in vitro, with the aim of understanding the mechanisms responsible for drug transport, in order to properly set the conditions of therapeutical application. Methods. Experiments were done in horizontal diffusion cells, using as donor a saturated solution of acyclovir at two different pH values (3.0 and 7.4). Different electrical conditions (current density and polarity) were employed. Results. At pH 3.0, acyclovir anodal transport was due to electrorepulsion, since acyclovir was 20% in the protonated form. In acyclovir anodal iontophoresis at pH 7.4 the main mechanism involved was electroosmosis, since the drug was substantially unionized and the negative charge of the skin at this pH caused the electroosmotic flow to be from anode to cathode. In the case of cathodal iontophoresis at pH 3.0, acyclovir transport was enhanced approx. seven times, due to the presence of an electroosmotic contribution caused by the reversal of the charge of the skin. At pH 7.4 during cathodal iontophoresis acyclovir transport was not enhanced because the electroosmotic flow was in the opposite direction, compared to drug electric transport, i.e. anode to cathode. The increased skin permeability caused by current application was demonstrated to be less important than electrorepulsion and electroosmosis. Conclusions. Anodal iontophoresis shows potential applicability for enhancing acyclovir transport to the skin, considering that both electric transport and electroosmosis can be used by appropriately setting the pH of the donor.Keywords
This publication has 8 references indexed in Scilit:
- The role of electroosmotic flow in transdermal iontophoresisAdvanced Drug Delivery Reviews, 2001
- Characterization of Convective Solvent Flow During IontophoresisPharmaceutical Research, 1994
- Convective Solvent Flow Across the Skin During IontophoresisPharmaceutical Research, 1993
- Acyclovir Bioavailability in Human SkinJournal of Investigative Dermatology, 1992
- lontophoretic Delivery of a Series of Tripeptides Across the Skin in VitroPharmaceutical Research, 1991
- Transport Mechanisms in Iontophoresis. II. Electroosmotic Flow and Transference Number Measurements for Hairless Mouse SkinPharmaceutical Research, 1990
- Transport Mechanisms in Iontophoresis. I. A Theoretical Model for the Effect of Electroosmotic Flow on Flux Enhancement in Transdermal IontophoresisPharmaceutical Research, 1990
- Characterization of the Pore Transport Properties and Tissue Alteration of Excised Human Skin during IontophoresisJournal of Pharmaceutical Sciences, 1988