Analysis and modelling of anisotropies in the dissipation rate of turbulence

Abstract
The modelling of anisotropies in the dissipation rate of turbulence is considered based on an analysis of the exact transport equation for the dissipation rate tensor. An algebraic model is systematically derived using integrity bases methods and tensor symmetry properties. The new model differs notably from all previously proposed models in that it depends nonlinearly on the mean velocity gradients. This gives rise to a transport equation for the scalar dissipation rate that is of the same general form as the commonly used model with one major exception: the coefficient of the production term is dependent on the invariants of both the rotational and irrotational strain rates. The relationship between the new model and other recently proposed models is examined in detail. Some basic tests and applications of the model are also provided along with a discussion of the implications for turbulence modelling.

This publication has 0 references indexed in Scilit: