Stability of Plant Defense Proteins in the Gut of Insect Herbivores
Open Access
- 16 February 2007
- journal article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 143 (4) , 1954-1967
- https://doi.org/10.1104/pp.106.095588
Abstract
Plant defense against insect herbivores is mediated in part by enzymes that impair digestive processes in the insect gut. Little is known about the evolutionary origins of these enzymes, their distribution in the plant kingdom, or the mechanisms by which they act in the protease-rich environment of the animal digestive tract. One example of such an enzyme is threonine (Thr) deaminase (TD), which in tomato (Solanum lycopersicum) serves a dual role in isoleucine (Ile) biosynthesis in planta and Thr degradation in the insect midgut. Here, we report that tomato uses different TD isozymes to perform these functions. Whereas the constitutively expressed TD1 has a housekeeping role in Ile biosynthesis, expression of TD2 in leaves is activated by the jasmonate signaling pathway in response to herbivore attack. Ingestion of tomato foliage by specialist (Manduca sexta) and generalist (Trichoplusia ni) insect herbivores triggered proteolytic removal of TD2's C-terminal regulatory domain, resulting in an enzyme that degrades Thr without being inhibited through feedback by Ile. This processed form (pTD2) of TD2 accumulated to high levels in the insect midgut and feces (frass). Purified pTD2 exhibited biochemical properties that are consistent with a postingestive role in defense. Shotgun proteomic analysis of frass from tomato-reared M. sexta identified pTD2 as one of the most abundant proteins in the excrement. Among the other tomato proteins identified were several jasmonate-inducible proteins that have a known or proposed role in anti-insect defense. Subtilisin-like proteases and other pathogenesis-related proteins, as well as proteins of unknown function, were also cataloged. We conclude that proteomic analysis of frass from insect herbivores provides a robust experimental approach to identify hyperstable plant proteins that serve important roles in defense.Keywords
This publication has 69 references indexed in Scilit:
- Functional Diversification of Acyl-Coenzyme A Oxidases in Jasmonic Acid Biosynthesis and ActionPlant Physiology, 2006
- Silencing Threonine Deaminase and JAR4 in Nicotiana attenuata Impairs Jasmonic Acid–Isoleucine–Mediated Defenses against Manduca sextaPlant Cell, 2006
- Molecular Interactions between the Specialist Herbivore Manduca sexta (Lepidoptera, Sphingidae) and Its Natural Host Nicotiana attenuata. VII. Changes in the Plant's ProteomePlant Physiology, 2006
- A Novel Function for the Cathepsin D Inhibitor in TomatoPlant Physiology, 2006
- Significance of Inducible Defense-related Proteins in Infected PlantsAnnual Review of Phytopathology, 2006
- Fragments of ATP synthase mediate plant perception of insect attackProceedings of the National Academy of Sciences, 2006
- Comparison of Label-free Methods for Quantifying Human Proteins by Shotgun ProteomicsMolecular & Cellular Proteomics, 2005
- A method for reducing the time required to match protein sequences with tandem mass spectraRapid Communications in Mass Spectrometry, 2003
- Turnabout is fair play: Secondary roles for primary compoundsJournal of Chemical Ecology, 1995
- Potential role of lipoxygenases in defense against insect herbivoryJournal of Chemical Ecology, 1994