Specific transformation abolishes cyclin D1 fluctuation throughout the cell cycle

Abstract
We analysed cyclin D1 mRNA and protein expression in several different cell types after separating these cells according to their different cell cycle phases by centrifugal elutriation. In normal human and rat fibroblasts cyclin D1 expression is high in early to mid G1 and decreases about 6–7 fold before onset of replication. It has been demonstrated that specific transforming events, such as loss of functional retinoblastoma protein, overexpression of c-myc, and transfection with the human papillomavirus oncoproteins E6 and E7 cause transcriptional downregulation of cyclin D1 expression in logarithmically growing cells. We found that such transformed cells exhibit loss of the cell cycle-dependent cyclin D1 fluctuation accompanied with reduced upregulation of cyclin D1 in G1 phase. The data presented here provide the experimental support for a recently suggested model involving the function of the retinoblastoma protein in cyclin D1 cell cycle regulation.