Hypoglycemic effects of a novel fatty acid oxidation inhibitor in rats and monkeys

Abstract
Increased fatty acid oxidation contributes to hyperglycemia in patients with non-insulin-dependent diabetes mellitus. To improve glucose homeostasis in these patients, we have designed a novel, reversible inhibitor of carnitine palmitoyltransferase I (CPT I) that potently inhibits fatty acid oxidation. SDZ-CPI-975 significantly lowered glucose levels in normal 18-h-fasted nonhuman primates and rats. In rats, glucose lowering required fatty acid oxidation inhibition of ≥70%, as measured by β-hydroxybutyrate levels, the end product of β-oxidation. In cynomolgus monkeys, comparable glucose lowering was achieved with more modest lowering of β-hydroxybutyrate levels. SDZ-CPI-975 did not increase glucose utilization by heart muscle, suggesting that CPT I inhibition with SDZ-CPI-975 would not induce cardiac hypertrophy. This was in contrast to the irreversible CPT I inhibitor etomoxir. These results demonstrate that SDZ-CPI-975 effectively inhibited fatty acid oxidation and lowered blood glucose levels in two species. Thus reversible inhibitors of CPT I represent a class of novel hypoglycemic agents that inhibit fatty acid oxidation without inducing cardiac hypertrophy.