Pulse evolution in a broad-bandwidth Ti:sapphire laser

Abstract
We demonstrate that by operating near the zero second- and third-order dispersion point in a self-mode-locked Ti:sapphire laser we can generate sub-10-fs pulses. Our numerical simulations show that the pulse duration is limited by fourth-order dispersion and that shorter pulses will be possible if this can be reduced. Also, by inserting a pellicle in various positions in a Ti:sapphire cavity, we have measured the intracavity pulse duration and chirp of the circulating pulse in the laser. Our results demonstrate that the pulse is shortest near the middle of the laser crystal, in one direction of propagation. In the other direction of propagation, the pulse is positively chirped and several times longer.