TheHerschelview of star formation in the Rosette molecular cloud under the influence of NGC 2244
Open Access
- 16 July 2010
- journal article
- letter
- Published by EDP Sciences
- Vol. 518, L83
- https://doi.org/10.1051/0004-6361/201014627
Abstract
Context. The Rosette molecular cloud is promoted as the archetype of a triggered star-formation site. This is mainly due to its morphology, because the central OB cluster NGC 2244 has blown a circular-shaped cavity into the cloud and the expanding H II-region now interacts with the cloud. Aims. Studying the spatial distribution of the different evolutionary states of all star-forming sites in Rosette and investigating possible gradients of the dust temperature will help to test the “triggered star-formation” scenario in Rosette.Methods. We use continuum data obtained with the PACS (70 and 160 μm) and SPIRE instruments (250, 350, 500 μm) of the Herschel telescope during the science demonstration phase of HOBYS.Results. Three-color images of Rosette impressively show how the molecular gas is heated by the radiative impact of the NGC 2244 cluster. A clear negative temperature gradient and a positive density gradient (running from the H II-region/molecular cloud interface into the cloud) are detected. Studying the spatial distribution of the most massive dense cores (size scale 0.05 to 0.3 pc), we find an age-sequence (from more evolved to younger) with increasing distance to the cluster NGC 2244. No clear gradient is found for the clump (size-scale up to 1 pc) distribution.Conclusions. The existence of temperature and density gradients and the observed age-sequence imply that star formation in Rosette may indeed be influenced by the radiative impact of the central NGC 2244 cluster. A more complete overview of the prestellar and protostellar population in Rosette is required to obtain a firmer result.Keywords
All Related Versions
This publication has 20 references indexed in Scilit:
- Small-scale structure in the Rosette molecular cloud revealed by HerschelPublished by EDP Sciences ,2010
- TheHerschel-SPIRE instrument and its in-flight performancePublished by EDP Sciences ,2010
- Initial highlights of the HOBYS key program, theHerschelimaging survey of OB young stellar objectsPublished by EDP Sciences ,2010
- A large-scale CO survey of the Rosette Molecular Cloud: assessing the effects of O stars on surrounding molecular gasMonthly Notices of the Royal Astronomical Society, 2009
- DRIVING TURBULENCE AND TRIGGERING STAR FORMATION BY IONIZING RADIATIONThe Astrophysical Journal, 2009
- Turbulent Gas Flows in the Rosette and G216‐2.5 Molecular Clouds: Assessing Turbulent Fragmentation Descriptions of Star FormationThe Astrophysical Journal, 2006
- Triggered massive-star formation on the borders of Galactic H II regionsAstronomy & Astrophysics, 2005
- Discovery of Multiseeded Multimode Formation of Embedded Clusters in the Rosette Molecular ComplexThe Astrophysical Journal, 2005
- An internal velocity study of the Rosette NebulaThe Astrophysical Journal, 1979
- Sequential formation of subgroups in OB associationsThe Astrophysical Journal, 1977