Involvement of Protein Kinase A in the Regulation of Intracellular Free Calcium and Phosphoinositide Turnover in Rat Myometrium1

Abstract
Preincubation of Fura 2-loaded rat myometrial cells with H-8, an inhibitor of protein kinase A, for 1 h reversed the inhibitory effects of 8-(4-chlorophenylthio)-cAMP (CPTcAMP) on the oxytocin-stimulated increase in (Ca2+)i (intracellular free calcium), with an EC50 of 47 .mu.M. H-8 also prevented the inhibition by relaxin and isoproterenol of the oxytocin-induced increase in (Ca2+)i. The EC50 of H-8 in reversing the relaxin effect was 42 .mu.M. H-8 reversal of the effect of relaxin on (Ca2+)i was evident both in the absence of extracellular calcium and in cells pretreated with pertussis toxin. H-8 also reversed the inhibitory effects of relaxin and CPTcAMP on the oxytocin-induced increase in [3H]inositol phosphate formation and [3H]phosphoinositide hydrolysis. Preincubation of myometrial cells for 1 h with H-7, another protein kinase inhibitor, only partially attenuated the inhibition by relaxin and CPTcAMP of the oxytocin-induced increase in (Ca2+)i and [3H]inositol phosphate formation at concentrations 4-5 times greater than those of H-8. Acute (15-min) exposure to phorbol myristate acetate (1.0 .mu.M) did not affect basal (Ca2+)i or the oxytocin-stimulated increases in (Ca2+)i or inositol phosphate formation. These results imply a regulatory role for protein kinase A in the inhibition of the oxytocin-induced increase in (Ca2+)i and inositol phosphate formation by relaxants.