Two-Way Antigenic Cross-Reactivity between Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Group 1 Animal CoVs Is Mediated through an Antigenic Site in the N-Terminal Region of the SARS-CoV Nucleoprotein
Open Access
- 15 December 2007
- journal article
- research article
- Published by American Society for Microbiology in Journal of Virology
- Vol. 81 (24) , 13365-13377
- https://doi.org/10.1128/jvi.01169-07
Abstract
In 2002, severe acute respiratory syndrome-associated coronavirus (SARS-CoV) emerged in humans, causing a global epidemic. By phylogenetic analysis, SARS-CoV is distinct from known CoVs and most closely related to group 2 CoVs. However, no antigenic cross-reactivity between SARS-CoV and known CoVs was conclusively and consistently demonstrated except for group 1 animal CoVs. We analyzed this cross-reactivity by an enzyme-linked immunosorbent assay (ELISA) and Western blot analysis using specific antisera to animal CoVs and SARS-CoV and SARS patient convalescent-phase or negative sera. Moderate two-way cross-reactivity between SARS-CoV and porcine CoVs (transmissible gastroenteritis CoV [TGEV] and porcine respiratory CoV [PRCV]) was mediated through the N but not the spike protein, whereas weaker cross-reactivity occurred with feline (feline infectious peritonitis virus) and canine CoVs. Using Escherichia coli -expressed recombinant SARS-CoV N protein and fragments, the cross-reactive region was localized between amino acids (aa) 120 to 208. The N-protein fragments comprising aa 360 to 412 and aa 1 to 213 reacted specifically with SARS convalescent-phase sera but not with negative human sera in ELISA; the fragment comprising aa 1 to 213 cross-reacted with antisera to animal CoVs, whereas the fragment comprising aa 360 to 412 did not cross-react and could be a potential candidate for SARS diagnosis. Particularly noteworthy, a single substitution at aa 120 of PRCV N protein diminished the cross-reactivity. We also demonstrated that the cross-reactivity is not universal for all group 1 CoVs, because HCoV-NL63 did not cross-react with SARS-CoV. One-way cross-reactivity of HCoV-NL63 with group 1 CoVs was localized to aa 1 to 39 and at least one other antigenic site in the N-protein C terminus, differing from the cross-reactive region identified in SARS-CoV N protein. The observed cross-reactivity is not a consequence of a higher level of amino acid identity between SARS-CoV and porcine CoV nucleoproteins, because sequence comparisons indicated that SARS-CoV N protein has amino acid identity similar to that of infectious bronchitis virus N protein and shares a higher level of identity with bovine CoV N protein within the cross-reactive region. The TGEV and SARS-CoV N proteins are RNA chaperons with long disordered regions. We speculate that during natural infection, antibodies target similar short antigenic sites within the N proteins of SARS-CoV and porcine group 1 CoVs that are exposed to an immune response. Identification of the cross-reactive and non-cross-reactive N-protein regions allows development of SARS-CoV-specific antibody assays for screening animal and human sera.Keywords
This publication has 66 references indexed in Scilit:
- Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein 3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory coronavirusVirology, 2006
- Animal Origins of the Severe Acute Respiratory Syndrome Coronavirus: Insight from ACE2-S-Protein InteractionsJournal of Virology, 2006
- Synthetic peptides derived from SARS coronavirus S protein with diagnostic and therapeutic potentialFEBS Letters, 2005
- Inactivated SARS-CoV vaccine elicits high titers of spike protein-specific antibodies that block receptor binding and virus entryBiochemical and Biophysical Research Communications, 2004
- Identification of a new human coronavirusNature Medicine, 2004
- Profiles of Antibody Responses against Severe AcuteRespiratory Syndrome Coronavirus Recombinant Proteins andTheir Potential Use as DiagnosticMarkersClinical and Vaccine Immunology, 2004
- The phylogeny of SARS coronavirusArchiv für die gesamte Virusforschung, 2004
- Unique and Conserved Features of Genome and Proteome of SARS-coronavirus, an Early Split-off From the Coronavirus Group 2 LineagePublished by Elsevier ,2003
- Monoclonal antibodies to a virulent strain of transmissible gastroenteritis virus: comparison of reactivity with virulent and attenuated virusArchiv für die gesamte Virusforschung, 1988
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry, 1976