An Examination of Response-Surface Methodologies for Uncertainty Analysis in Assessment Models

Abstract
Two techniques of uncertainty analysis were applied to a mathematical model that estimates the dose-equivalent to man from the concentration of radioactivity in air, water, and food. The response-surface method involved screening of the model to determine the important parameters, development of the response-surface equation, calculating the moments using the response-surface model, and fitting a Pearson or Johnson distribution using the calculated moments. The second method sampled model inputs by Latin hypercube methods and iteratively simulated the model to obtain an empirical estimation of the cdf. Comparison of the two methods indicates that it is often difftcult to ascertain the adequacy or reliability of the response-surface method. The empirical method is simpler to implement and, because all model inputs are included in the analysis, it is also a more reliable estimator of the cumulative distribution function of the model output than the response-surface method.

This publication has 0 references indexed in Scilit: