Modelling the structures of G protein-coupled receptors aided by three-dimensional validation

Abstract
G protein-coupled receptors (GPCRs) are abundant, activate complex signalling and represent the targets for up to ~60% of pharmaceuticals but there is a paucity of structural data. Bovine rhodopsin is the first GPCR for which high-resolution structures have been completed but significant variations in structure are likely to exist among the GPCRs. Because of this, considerable effort has been expended on developing in silico tools for refining structures of individual GPCRs. We have developed REPIMPS, a modification of the inverse-folding software Profiles-3D, to assess and predict the rotational orientation and vertical position of helices within the helix bundle of individual GPCRs. We highlight the value of the method by applying it to the Baldwin GPCR template but the method can, in principle, be applied to any low- or high-resolution membrane protein template or structure.