Caspase-Dependent Apoptosis by 2′,5′-Oligoadenylate Activation of RNase L Is Enhanced by IFN-β
- 1 December 2000
- journal article
- research article
- Published by Mary Ann Liebert Inc in Journal of Interferon & Cytokine Research
- Vol. 20 (12) , 1091-1100
- https://doi.org/10.1089/107999000750053762
Abstract
The 2′,5′-oligoadenylate (2-5A) system is an interferon (IFN)-regulated RNA decay pathway that provides innate immunity against viral infections. The biologic action of the 2-5A system is mediated by RNase L, an endoribonuclease that becomes enzymatically active after binding to 2-5A. RNase L is also implicated in mediating apoptosis in response to both viral and nonviral inducers. To study the cellular effects of RNase L activation directly, 2-5A was transfected into the human ovarian cancer cell line, Hey1B. Activation of RNase L by 2-5A resulted in specific 18S rRNA cleavage and induction of apoptosis, as measured by TUNEL and annexin V binding assays. In contrast, the dimeric form of 2-5A, ppA2′p5′A, neither activated RNase L nor caused apoptosis. Treatment with IFN-β prior to 2-5A transfection enhanced cellular RNase L levels (≤ 2.2-fold) and increased the proportion of cells undergoing apoptosis (by ≤40%). However, rRNA cleavages after 2-5A transfections were not enhanced by IFN-β pretreatments, indicating that basal levels of RNase L were sufficient for this activity. Apoptosis in response to RNase L activation was accompanied by cytochrome c release from mitochondria. Induction of apoptosis by either 2-5A alone or by the combination of 2-5A and IFN-β was effectively blocked with either the pancaspase inhibitor, Z-VAD-fmk, or with the caspase 3 inhibitor, DEVD-fmk. Therefore, activation of RNase L by 2-5A leads to cytochrome c release into the cytoplasm and then to caspase activation and apoptosis. These results suggest potential uses for 2-5A in augmenting the anticancer activities of IFN.Keywords
This publication has 27 references indexed in Scilit:
- Requirement of JNK for Stress- Induced Activation of the Cytochrome c-Mediated Death PathwayScience, 2000
- Distinct stages of cytochrome c release from mitochondria: evidence for a feedback amplification loop linking caspase activation to mitochondrial dysfunction in genotoxic stress induced apoptosisCell Death & Differentiation, 2000
- Interferon Enhances the Activity of the Anticancer Ribonuclease, OnconaseJournal of Interferon & Cytokine Research, 1999
- Monocyte-mediated Tumoricidal Activity via the Tumor Necrosis Factor–related Cytokine, TRAILThe Journal of Experimental Medicine, 1999
- Mitochondria and ApoptosisScience, 1998
- HOW CELLS RESPOND TO INTERFERONSAnnual Review of Biochemistry, 1998
- The role of 2′-5′ oligoadenylate-activated ribonuclease L in apoptosisCell Death & Differentiation, 1998
- A Study of the Interferon Antiviral Mechanism: Apoptosis Activation by the 2–5A SystemThe Journal of Experimental Medicine, 1997
- Stoichiometry of 2′,5′-Oligoadenylate-induced Dimerization of Ribonuclease LPublished by Elsevier ,1996
- Expression cloning of 2-5A-dependent RNAase: A uniquely regulated mediator of interferon actionCell, 1993