Accounting for common method variance in cross-sectional research designs.

Abstract
Cross-sectional studies of attitude-behavior relationships are vulnerable to the inflation of correlations by common method variance (CMV). Here, a model is presented that allows partial correlation analysis to adjust the observed correlations for CMV contamination and determine if conclusions about the statistical and practical significance of a predictor have been influenced by the presence of CMV. This method also suggests procedures for designing questionnaires to increase the precision of this adjustment.