On-Off Intermittency in a Human Balancing Task

Abstract
Motion analysis in three dimensions demonstrate that the fluctuations in the vertical displacement angle of a stick balanced at the fingertip obey a scaling law characteristic of on-off intermittency and that >98% of the corrective movements occur fast compared to the measured time delay. These experimental observations are reproduced by a model for an inverted pendulum with time-delayed feedback in which parametric noise forces a control parameter across a particular stability boundary. Our observations suggest that parametric noise is an essential, but up until now underemphasized, component of the neural control of balance.