An Algorithm for Detecting Quantum-Gravity Photon Dispersion in Gamma-Ray Bursts: DISCAN
Preprint
- 2 September 2007
Abstract
DisCan is a new algorithm implementing photon dispersion cancellation in order to measure energy-dependent delays in variable sources. This method finds the amount of reversed dispersion that optimally cancels any actual dispersion present. It applies to any time- and energy-tagged photon data, and can avoid binning in both time and energy. The primary motivation here is the search for quantum gravity based dispersion in future gamma ray burst data from the Gamma Ray Large Area Space Telescope (GLAST). Extrapolation of what is know about bursts at lower energies yields a reasonable prospect that photon dispersion effects consistent with some quantum gravity formalisms may be detected in sufficiently bright bursts. Short bursts have no or very small inherent lags, and are therefore better prospects than long ones, but even they suffer systematic error due to pulse asymmetry that may yield an irreducible uncertainty. We note that data at energies higher than about 0.1 TeV may not be useful for detecting dispersion in GRBs. Of several variants of the proposed algorithm, one based on Shannon information is consistently somewhat superior to all of the others we investigated.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: