Discovery of Human Inversion Polymorphisms by Comparative Analysis of Human and Chimpanzee DNA Sequence Assemblies

Abstract
With a draft genome-sequence assembly for the chimpanzee available, it is now possible to perform genome-wide analyses to identify, at a submicroscopic level, structural rearrangements that have occurred between chimpanzees and humans. The goal of this study was to investigate chromosomal regions that are inverted between the chimpanzee and human genomes. Using the net alignments for the builds of the human and chimpanzee genome assemblies, we identified a total of 1,576 putative regions of inverted orientation, covering more than 154 mega-bases of DNA. The DNA segments are distributed throughout the genome and range from 23 base pairs to 62 mega-bases in length. For the 66 inversions more than 25 kilobases (kb) in length, 75% were flanked on one or both sides by (often unrelated) segmental duplications. Using PCR and fluorescence in situ hybridization we experimentally validated 23 of 27 (85%) semi-randomly chosen regions; the largest novel inversion confirmed was 4.3 mega-bases at human Chromosome 7p14. Gorilla was used as an out-group to assign ancestral status to the variants. All experimentally validated inversion regions were then assayed against a panel of human samples and three of the 23 (13%) regions were found to be polymorphic in the human genome. These polymorphic inversions include 730 kb (at 7p22), 13 kb (at 7q11), and 1 kb (at 16q24) fragments with a 5%, 30%, and 48% minor allele frequency, respectively. Our results suggest that inversions are an important source of variation in primate genome evolution. The finding of at least three novel inversion polymorphisms in humans indicates this type of structural variation may be a more common feature of our genome than previously realized. Chimpanzee is the closest relative to humans having DNA sequences about 98% identical to each other. Small DNA sequence changes and probably more importantly, larger structural changes of chromosomes, led to the divergence of the two species some 6 million years ago. Until recently, there were ten structural differences visible under the microscope between chimpanzee and human, and nine of these were inversions of DNA. Through computational comparisons of genome sequences, the current study identifies another 1,576 putative inversion events. Thirty-three of these were larger than 100,000 base pairs in size and 29 intersect genes, prioritizing them for evolutionary studies. Twenty-three of the inversions have been confirmed experimentally with the largest being 4.3 million base pairs in size on human Chromosome 7. Surprisingly, three of the “inverted” regions were found to be variable in their orientation in the human population (in some cases the inversion was in the ancestral orientation found in chimpanzee). These observations indicate the human genome is still evolving in structure. Moreover, since such variable inversions have been shown to predispose to other (sometimes deleterious) changes in chromosomes, the new data delineate potential disease-associated genes.