Circadian variation in the distribution of cells throughout the different phases of the cell cycle in the anterior pituitary gland of adult male rats as analysed by flow cytometry

Abstract
Flow cytometric analysis of nuclei stained with propidium iodide (PI) has been used to study the distribution of cells throughout the different phases of the cell cycle in the anterior pituitary gland of adult male Sprague–Dawley rats at different times of the day. According to PI fluorescence intensity the relative numbers of cells in S phase (cells with a DNA content between that of somatic cells in interphase (2n) and that of somatic cells after duplication of the DNA prior to cell division (4n)) and G2/M phase (4n) were calculated. A significant circadian rhythm was found for cells in both the S phase (P < 0·05) and the G2/M phase (P < 0·01). The wave of cells in S phase with a peak at the middle of the light period (14.00 h) precedes by about 6 h the wave of cells in G2/M phase (peak at 20.00 h). Most of the DNA-replicating cells were found during the early S phase at 11.00 h, advancing further up to the middle of this phase at 14.00 h. Cells were distributed homogeneously throughout the S phase at 17.00 h. These data strongly suggest that the beginning of the light period triggers a wave of cells to leave G0/G1 into S phase. Journal of Endocrinology (1991) 129, 329–333