Extracellular Signal-Regulated Kinase 2 Interacts with and Is Negatively Regulated by the LIM-Only Protein FHL2 in Cardiomyocytes
Open Access
- 1 February 2004
- journal article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 24 (3) , 1081-1095
- https://doi.org/10.1128/mcb.24.3.1081-1095.2004
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway regulates diverse biologic functions including cell growth, differentiation, proliferation, and apoptosis. The extracellular signal-regulated kinases (ERKs) constitute one branch of the MAPK pathway that has been implicated in the regulation of cardiac differentiated growth, although the downstream mechanisms whereby ERK signaling affects this process are not well characterized. Here we performed a yeast two-hybrid screen with ERK2 bait and a cardiac cDNA library to identify novel proteins involved in regulating ERK signaling in cardiomyocytes. This screen identified the LIM-only factor FHL2 as an ERK interacting protein in both yeast and mammalian cells. In vivo, FHL2 and ERK2 colocalized in the cytoplasm at the level of the Z-line, and interestingly, FHL2 interacted more efficiently with the activated form of ERK2 than with the dephosphorylated form. ERK2 also interacted with FHL1 and FHL3 but not with the muscle LIM protein. Moreover, at least two LIM domains in FHL2 were required to mediate efficient interaction with ERK2. The interaction between ERK2 and FHL2 did not influence ERK1/2 activation, nor was FHL2 directly phosphorylated by ERK2. However, FHL2 inhibited the ability of activated ERK2 to reside within the nucleus, thus blocking ERK-dependent transcriptional responsiveness of ELK-1, GATA4, and the atrial natriuretic factor promoter. Finally, FHL2 partially antagonized the cardiac hypertrophic response induced by activated MEK-1, GATA4, and phenylephrine agonist stimulation. Collectively, these results suggest that FHL2 serves a repressor function in cardiomyocytes through its ability to inhibit ERK1/2 transcriptional coupling.Keywords
This publication has 43 references indexed in Scilit:
- Identification of the LIM Protein FHL2 as a Coactivator of β-CateninJournal of Biological Chemistry, 2003
- Cytosolic Retention of Phosphorylated Extracellular Signal-Regulated Kinase and a Rho-Associated Kinase-Mediated Signal Impair Expression of p21Cip1/Waf1 in Phorbol 12-Myristate-13- Acetate-Induced Apoptotic CellsMolecular and Cellular Biology, 2002
- The Transcription Factors GATA4 and dHAND Physically Interact to Synergistically Activate Cardiac Gene Expression through a p300-dependent MechanismJournal of Biological Chemistry, 2002
- Interaction of the heart‐specific LIM domain protein, FHL2, with DNA‐binding nuclear protein, hNP220Journal of Cellular Biochemistry, 2002
- The Transcription Factor GATA4 Is Activated by Extracellular Signal-Regulated Kinase 1- and 2-Mediated Phosphorylation of Serine 105 in CardiomyocytesMolecular and Cellular Biology, 2001
- Src and Multiple MAP Kinase Activation in Cardiac Hypertrophy and Congestive Heart Failure Under Chronic Pressure-overload: Comparison with Acute Mechanical StretchJournal of Molecular and Cellular Cardiology, 2001
- Extracellular Signal-regulated Kinase Plays an Essential Role in Hypertrophic Agonists, Endothelin-1 and Phenylephrine-induced Cardiomyocyte HypertrophyJournal of Biological Chemistry, 2000
- Requirement of Activation of the Extracellular Signal-regulated Kinase Cascade in Myocardial Cell HypertrophyJournal of Molecular and Cellular Cardiology, 2000
- Protein Kinase C, but Not Tyrosine Kinases or Ras, Plays a Critical Role in Angiotensin II-induced Activation of Raf-1 Kinase and Extracellular Signal-regulated Protein Kinases in Cardiac MyocytesJournal of Biological Chemistry, 1996
- Dissociation of p44 and p42 Mitogen-activated Protein Kinase Activation from Receptor-induced Hypertrophy in Neonatal Rat Ventricular MyocytesPublished by Elsevier ,1996