Abstract
The energy-independent model pseudopotential theory, developed and used previously for simple metals, is extended to the binary alloys of these simple metals and a self-consistent pseudopotential, which contains a detailed concentration dependence, is derived for the calculation of various properties of these alloys. This pseudopotential is applied within a low-order perturbation theory to calculate the form factors and transport coefficients for the K-Rb, Na-K and Na-Cs alloys in the liquid state. The calculated results show that a very significant fraction of the valence electrons is localised on the electronegative component in the liquid Na-Cs alloy, as compared with the other alloys considered, and, as a result, the electrical resistivity is very much greater for the liquid Na-Cs alloy than for the liquid Na-K and K-Rb alloys, as demonstrated in experiment. Finally, the applicability of the pseudopotential perturbation theory to the liquid alloys of simple metals is discussed.