Abstract
A systematic method for the computation of finite temperature ($T$) crossover functions near quantum critical points close to, or above, their upper-critical dimension is devised. We describe the physics of the various regions in the $T$ and critical tuning parameter ($t$) plane. The quantum critical point is at $T=0$, $t=0$, and in many cases there is a line of finite temperature transitions at $T = T_c (t)$, $t < 0$ with $T_c (0) = 0$. For the relativistic, $n$-component $\phi^4$ continuum quantum field theory (which describes lattice quantum rotor ($n \geq 2$) and transverse field Ising ($n=1$) models) the upper critical dimension is $d=3$, and for $d0$; indeed, analytic continuation in $t$ is used to obtain results in a portion of the phase diagram. Our method also applies to a large class of other quantum critical points and their associated continuum quantum field theories.

This publication has 0 references indexed in Scilit: