Impairment of Endothelium-Dependent Dilation in Rabbit Renal Arteries by Oxidized Lipoprotein(a)
- 15 September 1995
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation
- Vol. 92 (6) , 1582-1589
- https://doi.org/10.1161/01.cir.92.6.1582
Abstract
Background Hyperlipoproteinemia is associated with impairment of nitric oxide (NO)–mediated, endothelium-dependent dilation in renal arteries. In the present study, we assessed and compared the effects of human lipoprotein(a) and LDL on endothelium-dependent and -independent dilation in vitro. Methods and Results Dilator responses were detected in isolated, saline-perfused, preconstricted arterial segments by a photoelectric device. Acetylcholine-induced, endothelium-dependent dilator responses of rabbit renal arteries were not significantly attenuated after 150 minutes of incubation with native lipoprotein(a) (30 and 100 μg/mL). However, exposure to in vitro oxidized lipoprotein(a) (150 minutes, 30 and 100 μg/mL) suppressed acetylcholine-induced dilator responses in a dose-dependent manner. At similar concentrations, native and oxidized LDL had no effect. Endothelium-independent dilations induced by the NO-donor sodium nitroprusside were also impaired by oxidized lipoprotein(a), whereas forskolin-induced dilator responses were unaffected, indicating that smooth muscle dilator capacity was not impaired. Attenuation of dilator responses by oxidized lipoprotein(a) was potentiated in the presence of superoxide dismutase (SOD). The SOD effect was completely blunted by coincubation with catalase (100 U/mL) or deferoxamine. In the absence of SOD, catalase or deferoxamine had no effect on dilator responses. Using a chemiluminescence assay, we could detect increased O2− production by arteries pretreated with oxidized lipoprotein(a), which suggested that enhanced NO inactivation by O2− could be the underlying mechanism for impairment of endothelium-dependent dilations. Conclusions These data indicate that oxidized lipoprotein(a) impairs endothelium-dependent dilation and is more potent than oxidized LDL in this effect. The mechanism of the impairment may involve formation of O2− and inactivation of NO.Keywords
This publication has 39 references indexed in Scilit:
- Induction of oxygen free radical generation in human monocytes by lipoprotein(a)European Journal of Clinical Investigation, 1994
- Impairment of endothelium-dependent dilation is an early event in children with familial hypercholesterolemia and is related to the lipoprotein(a) level.Journal of Clinical Investigation, 1994
- Cyclosporine and oxidized lipoproteins affect vascular reactivity. Influence of the endothelium.Hypertension, 1993
- The Role of Oxygen Radicals in Human Disease, with Particular Reference to the Vascular SystemPathophysiology of Haemostasis and Thrombosis, 1993
- Endothelial function in human coronary arteries in vivo. Focus on hypercholesterolemia.Hypertension, 1991
- Relation of Serum Lipoprotein(a) Concentration and Apolipoprotein(a) Phenotype to Coronary Heart Disease in Patients with Familial HypercholesterolemiaNew England Journal of Medicine, 1990
- Hypercholesterolemia causes generalized impairment of endothelium-dependent relaxation to aggregating platelets in porcine arteriesJournal of the American College of Cardiology, 1989
- Beyond CholesterolNew England Journal of Medicine, 1989
- Endothelial cells are involved in the vasodilatory response to hypoxiaPflügers Archiv - European Journal of Physiology, 1983
- The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholineNature, 1980